Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.292
Filtrar
1.
Sci Rep ; 14(1): 8804, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627498

RESUMO

Arrhythmias are irregular heartbeat rhythms caused by various conditions. Automated ECG signal classification aids in diagnosing and predicting arrhythmias. Current studies mostly focus on 1D ECG signals, overlooking the fusion of multiple ECG modalities for enhanced analysis. We converted ECG signals into modal images using RP, GAF, and MTF, inputting them into our classification model. To optimize detail retention, we introduced a CNN-based model with FCA for multimodal ECG tasks. Achieving 99.6% accuracy on the MIT-BIH arrhythmia database for five arrhythmias, our method outperforms prior models. Experimental results confirm its reliability for ECG classification tasks.


Assuntos
Algoritmos , Eletrocardiografia , Humanos , Frequência Cardíaca , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Redes Neurais de Computação , Arritmias Cardíacas/diagnóstico
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 167-172, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605616

RESUMO

A pulse and respiration synchronous detection system is designed to explore the changes of physiological signals in different situations. The system obtains the corresponding signal through STM32 control pulse and respiratory acquisition circuit, calculates and displays real-time parameters such as heart rate and respiratory rate, and transmits the data to the upper computer for storage in the database. The experimental test results show that the system can monitor pulse and respiratory waveform in different situations, and the waveform is in good condition. Compared with medical pulse oximeter, the error of measured heart rate and blood oxygen concentration is less than 3%, and the error of respiratory rate is less than 5% compared with the actual value, which verifies the accuracy of system signal acquisition. The system is small in size, low in cost, and comfortable to wear, and can be applied in experimental research related to pulse and respiratory signals.


Assuntos
Oximetria , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia , Taxa Respiratória , Gasometria
3.
IEEE J Transl Eng Health Med ; 12: 348-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606390

RESUMO

Wearable sensing has become a vital approach to cardiac health monitoring, and seismocardiography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG is hindered by motion artifacts, including those encountered in practice of which the strongest source is walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant recordings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet transform (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization, we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation. We used an interactive selection approach to improve estimation accuracy. The best decomposition method for reduction of motion artifact noise was the MODWT. Our algorithm improved heart rate estimation from 0.1 to 0.8 r-squared at -15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals up to a SNR of -19 dB without requiring any external assistance from electrocardiography (ECG). Such a standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.


Assuntos
Artefatos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Coração , Movimento (Física)
4.
J Acoust Soc Am ; 155(4): 2407-2437, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568143

RESUMO

The channel vocoder has become a useful tool to understand the impact of specific forms of auditory degradation-particularly the spectral and temporal degradation that reflect cochlear-implant processing. Vocoders have many parameters that allow researchers to answer questions about cochlear-implant processing in ways that overcome some logistical complications of controlling for factors in individual cochlear implant users. However, there is such a large variety in the implementation of vocoders that the term "vocoder" is not specific enough to describe the signal processing used in these experiments. Misunderstanding vocoder parameters can result in experimental confounds or unexpected stimulus distortions. This paper highlights the signal processing parameters that should be specified when describing vocoder construction. The paper also provides guidance on how to determine vocoder parameters within perception experiments, given the experimenter's goals and research questions, to avoid common signal processing mistakes. Throughout, we will assume that experimenters are interested in vocoders with the specific goal of better understanding cochlear implants.


Assuntos
Implante Coclear , Implantes Cocleares , Processamento de Sinais Assistido por Computador
5.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598676

RESUMO

Developing reliable methodologies to decode brain state information from electroencephalogram (EEG) signals is an open challenge, crucial to implementing EEG-based brain-computer interfaces (BCIs). For example, signal processing methods that identify brain states could allow motor-impaired patients to communicate via non-invasive, EEG-based BCIs. In this work, we focus on the problem of distinguishing between the states of eyes closed (EC) and eyes open (EO), employing quantities based on permutation entropy (PE). An advantage of PE analysis is that it uses symbols (ordinal patterns) defined by the ordering of the data points (disregarding the actual values), hence providing robustness to noise and outliers due to motion artifacts. However, we show that for the analysis of multichannel EEG recordings, the performance of PE in discriminating the EO and EC states depends on the symbols' definition and how their probabilities are estimated. Here, we study the performance of PE-based features for EC/EO state classification in a dataset of N=107 subjects with one-minute 64-channel EEG recordings in each state. We analyze features obtained from patterns encoding temporal or spatial information, and we compare different approaches to estimate their probabilities (by averaging over time, over channels, or by "pooling"). We find that some PE-based features provide about 75% classification accuracy, comparable to the performance of features extracted with other statistical analysis techniques. Our work highlights the limitations of PE methods in distinguishing the eyes' state, but, at the same time, it points to the possibility that subject-specific training could overcome these limitations.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Entropia , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos , Processamento de Sinais Assistido por Computador
6.
BMC Med Inform Decis Mak ; 24(1): 94, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600479

RESUMO

Electrocardiogram (ECG) signals are very important for heart disease diagnosis. In this paper, a novel early prediction method based on Nested Long Short-Term Memory (Nested LSTM) is developed for sudden cardiac death risk detection. First, wavelet denoising and normalization techniques are utilized for reliable reconstruction of ECG signals from extreme noise conditions. Then, a nested LSTM structure is adopted, which can guide the memory forgetting and memory selection of ECG signals, so as to improve the data processing ability and prediction accuracy of ECG signals. To demonstrate the effectiveness of the proposed method, four different models with different signal prediction techniques are used for comparison. The extensive experimental results show that this method can realize an accurate prediction of the cardiac beat's starting point and track the trend of ECG signals effectively. This study holds significant value for timely intervention for patients at risk of sudden cardiac death.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Morte Súbita Cardíaca/etiologia , Algoritmos
7.
Comput Methods Programs Biomed ; 249: 108157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582037

RESUMO

BACKGROUND AND OBJECTIVE: T-wave alternans (TWA) is a fluctuation in the repolarization morphology of the ECG. It is associated with cardiac instability and sudden cardiac death risk. Diverse methods have been proposed for TWA analysis. However, TWA detection in ambulatory settings remains a challenge due to the absence of standardized evaluation metrics and detection thresholds. METHODS: In this work we use traditional TWA analysis signal processing-based methods for feature extraction, and two machine learning (ML) methods, namely, K-nearest-neighbor (KNN) and random forest (RF), for TWA detection, addressing hyper-parameter tuning and feature selection. The final goal is the detection in ambulatory recordings of short, non-sustained and sparse TWA events. RESULTS: We train ML methods to detect a wide variety of alternant voltage from 20 to 100 µV, i.e., ranging from non-visible micro-alternans to TWA of higher amplitudes, to recognize a wide range in concordance to risk stratification. In classification, RF outperforms significantly the recall in comparison with the signal processing methods, at the expense of a small lost in precision. Despite ambulatory detection stands for an imbalanced category context, the trained ML systems always outperform signal processing methods. CONCLUSIONS: We propose a comprehensive integration of multiple variables inspired by TWA signal processing methods to fed learning-based methods. ML models consistently outperform the best signal processing methods, yielding superior recall scores.


Assuntos
Arritmias Cardíacas , Eletrocardiografia Ambulatorial , Humanos , Eletrocardiografia Ambulatorial/métodos , Frequência Cardíaca , Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos
8.
Physiol Meas ; 45(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38430568

RESUMO

Objective. In previous studies, the factors affecting the accuracy of imaging photoplethysmography (iPPG) heart rate (HR) measurement have been focused on the light intensity, facial reflection angle, and motion artifacts. However, the factor of specularly reflected light has not been studied in detail. We explored the effect of specularly reflected light on the accuracy of HR estimation and proposed an estimation method for the direction of specularly radiated light.Approach. To study the HR measurement accuracy influenced by specularly reflected light, we control the component of specularly reflected light by controlling its angle. A total of 100 videos from four different reflected light angles were collected, and 25 subjects participated in the dataset collection. We extracted angles and illuminations for 71 facial regions, fitting sample points through interpolation, and selecting the angle corresponding to the maximum weight in the fitted curve as the estimated reflected angle.Main results. The experimental results show that higher specularly reflected light compromises HR estimation accuracy under the same value of light intensity. Notably, at a 60° angle, the HR accuracy (ACC) increased by 0.7%, while the signal-to-noise ratio and Pearson correlation coefficient increased by 0.8 dB and 0.035, respectively, compared to 0°. The overall root mean squared error, standard deviation, and mean error of our proposed reflected light angle estimation method on the illumination multi-angle incidence (IMAI) dataset are 1.173°, 0.978°, and 0.773°. The average Pearson value is 0.8 in the PURE rotation dataset. In addition, the average ACC of HR measurements in the PURE dataset is improved by 1.73% in our method compared to the state-of-the-art traditional methods.Significance. Our method has great potential for clinical applications, especially in bright light environments such as during surgery, to improve accuracy and monitor blood volume changes in blood vessels.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Humanos , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Rotação , Artefatos , Algoritmos
9.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38544146

RESUMO

Research of novel biosignal modalities with application to remote patient monitoring is a subject of state-of-the-art developments. This study is focused on sonified ECG modality, which can be transmitted as an acoustic wave and received by GSM (Global System for Mobile Communications) microphones. Thus, the wireless connection between the patient module and the cloud server can be provided over an audio channel, such as a standard telephone call or audio message. Patients, especially the elderly or visually impaired, can benefit from ECG sonification because the wireless interface is readily available, facilitating the communication and transmission of secure ECG data from the patient monitoring device to the remote server. The aim of this study is to develop an AI-driven algorithm for 12-lead ECG sonification to support diagnostic reliability in the signal processing chain of the audio ECG stream. Our methods present the design of two algorithms: (1) a transformer (ECG-to-Audio) based on the frequency modulation (FM) of eight independent ECG leads in the very low frequency band (300-2700 Hz); and (2) a transformer (Audio-to-ECG) based on a four-layer 1D convolutional neural network (CNN) to decode the audio ECG stream (10 s @ 11 kHz) to the original eight-lead ECG (10 s @ 250 Hz). The CNN model is trained in unsupervised regression mode, searching for the minimum error between the transformed and original ECG signals. The results are reported using the PTB-XL 12-lead ECG database (21,837 recordings), split 50:50 for training and test. The quality of FM-modulated ECG audio is monitored by short-time Fourier transform, and examples are illustrated in this paper and supplementary audio files. The errors of the reconstructed ECG are estimated by a popular ECG diagnostic toolbox. They are substantially low in all ECG leads: amplitude error (quartile range RMSE = 3-7 µV, PRD = 2-5.2%), QRS detector (Se, PPV > 99.7%), P-QRS-T fiducial points' time deviation (<2 ms). Low errors generalized across diverse patients and arrhythmias are a testament to the efficacy of the developments. They support 12-lead ECG sonification as a wireless interface to provide reliable data for diagnostic measurements by automated tools or medical experts.


Assuntos
Redes Neurais de Computação , Rios , Humanos , Idoso , Reprodutibilidade dos Testes , Eletrocardiografia/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
10.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38544166

RESUMO

In this study, we developed a machine learning model for automated seizure detection using system identification techniques on EEG recordings. System identification builds mathematical models from a time series signal and uses a small number of parameters to represent the entirety of time domain signal epochs. Such parameters were used as features for the classifiers in our study. We analyzed 69 seizure and 55 non-seizure recordings and an additional 10 continuous recordings from Thomas Jefferson University Hospital, alongside a larger dataset from the CHB-MIT database. By dividing EEGs into epochs (1 s, 2 s, 5 s, and 10 s) and employing fifth-order state-space dynamic systems for feature extraction, we tested various classifiers, with the decision tree and 1 s epochs achieving the highest performance: 96.0% accuracy, 92.7% sensitivity, and 97.6% specificity based on the Jefferson dataset. Moreover, as the epoch length increased, the accuracy dropped to 94.9%, with a decrease in sensitivity to 91.5% and specificity to 96.7%. Accuracy for the CHB-MIT dataset was 94.1%, with 87.6% sensitivity and 97.5% specificity. The subject-specific cases showed improved results, with an average of 98.3% accuracy, 97.4% sensitivity, and 98.4% specificity. The average false detection rate per hour was 0.5 ± 0.28 in the 10 continuous EEG recordings. This study suggests that using a system identification technique, specifically, state-space modeling, combined with machine learning classifiers, such as decision trees, is an effective and efficient approach to automated seizure detection.


Assuntos
Algoritmos , Convulsões , Humanos , Convulsões/diagnóstico , Eletroencefalografia/métodos , Modelos Teóricos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
11.
Comput Biol Med ; 173: 108333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522250

RESUMO

Nowadays, the use of biological signals as a criterion for identity recognition has gained increasing attention from various organizations and companies. Therefore, it has become crucial to have a biometric identity recognition method that is fast and accurate. In this paper, we propose a linear electrocardiogram (ECG) data preprocessing algorithm based on Kalman filters for rapid noise data filtering (wavelet transform filtering algorithm). Additionally, we introduce a generative network model called Data Generation Strategy Network (DRCN) based on generative networks. The DRCN is employed to augment training samples for convolutional classification networks, ultimately improving the classification performance of the model. Through the final experiments, our method successfully reduced the average misidentification rate of ECG-based identity recognition to 2.5%, and achieved an average recognition rate of 98.7% for each category, significantly surpassing previous achievements. In the future, this method is expected to be widely applied in the field of ECG-based identity recognition.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Biometria , Eletrocardiografia/métodos
12.
Physiol Meas ; 45(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478997

RESUMO

Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.Approach.This work describes the creation of a standard Python toolbox, denotedpyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.Main results.The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.Significance.Based on these fiducial points,pyPPGengineered a set of 74 PPG biomarkers. Studying PPG time-series variability usingpyPPGcan enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.pyPPGis available onhttps://physiozoo.com/.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Polissonografia , Algoritmos , Biomarcadores
13.
Sci Rep ; 14(1): 7592, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555390

RESUMO

Traditionally, heart murmurs are diagnosed through cardiac auscultation, which requires specialized training and experience. The purpose of this study is to predict patients' clinical outcomes (normal or abnormal) and identify the presence or absence of heart murmurs using phonocardiograms (PCGs) obtained at different auscultation points. A semi-supervised model tailored to PCG classification is introduced in this study, with the goal of improving performance using time-frequency deep features. The study begins by investigating the behavior of PCGs in the time-frequency domain, utilizing the Stockwell transform to convert the PCG signal into two-dimensional time-frequency maps (TFMs). A deep network named AlexNet is then used to derive deep feature sets from these TFMs. In feature reduction, redundancy is eliminated and the number of deep features is reduced to streamline the feature set. The effectiveness of the extracted features is evaluated using three different classifiers using the CinC/Physionet challenge 2022 dataset. For Task I, which focuses on heart murmur detection, the proposed approach achieved an average accuracy of 93%, sensitivity of 91%, and F1-score of 91%. According to Task II of the CinC/Physionet challenge 2022, the approach showed a clinical outcome cost of 5290, exceeding the benchmark set by leading methods in the challenge.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Humanos , Fonocardiografia/métodos , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca
14.
Artif Intell Med ; 150: 102818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553158

RESUMO

Cardiac arrhythmia is one of the prime reasons for death globally. Early diagnosis of heart arrhythmia is crucial to provide timely medical treatment. Heart arrhythmias are diagnosed by analyzing the electrocardiogram (ECG) of patients. Manual analysis of ECG is time-consuming and challenging. Hence, effective automated detection of heart arrhythmias is important to produce reliable results. Different deep-learning techniques to detect heart arrhythmias such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Transformer, and Hybrid CNN-LSTM were proposed. However, these techniques, when used individually, are not sufficient to effectively learn multiple features from the ECG signal. The fusion of CNN and LSTM overcomes the limitations of CNN in the existing studies as CNN-LSTM hybrids can extract spatiotemporal features. However, LSTMs suffer from long-range dependency issues due to which certain features may be ignored. Hence, to compensate for the drawbacks of the existing models, this paper proposes a more comprehensive feature fusion technique by merging CNN, LSTM, and Transformer models. The fusion of these models facilitates learning spatial, temporal, and long-range dependency features, hence, helping to capture different attributes of the ECG signal. These features are subsequently passed to a majority voting classifier equipped with three traditional base learners. The traditional learners are enriched with deep features instead of handcrafted features. Experiments are performed on the MIT-BIH arrhythmias database and the model performance is compared with that of the state-of-art models. Results reveal that the proposed model performs better than the existing models yielding an accuracy of 99.56%.


Assuntos
Arritmias Cardíacas , Processamento de Sinais Assistido por Computador , Humanos , Arritmias Cardíacas/diagnóstico , Redes Neurais de Computação , Eletrocardiografia/métodos , Aprendizado de Máquina , Algoritmos
15.
Math Biosci Eng ; 21(3): 4286-4308, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549328

RESUMO

The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.


Assuntos
Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Eletrocardiografia/métodos , Fontes de Energia Elétrica , Algoritmos
16.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474953

RESUMO

The Bio-Radar is herein presented as a non-contact radar system able to capture vital signs remotely without requiring any physical contact with the subject. In this work, the ability to use the proposed system for emotion recognition is verified by comparing its performance on identifying fear, happiness and a neutral condition, with certified measuring equipment. For this purpose, machine learning algorithms were applied to the respiratory and cardiac signals captured simultaneously by the radar and the referenced contact-based system. Following a multiclass identification strategy, one could conclude that both systems present a comparable performance, where the radar might even outperform under specific conditions. Emotion recognition is possible using a radar system, with an accuracy equal to 99.7% and an F1-score of 99.9%. Thus, we demonstrated that it is perfectly possible to use the Bio-Radar system for this purpose, which is able to be operated remotely, avoiding the subject awareness of being monitored and thus providing more authentic reactions.


Assuntos
Radar , Sinais Vitais , Taxa Respiratória , Algoritmos , Emoções , Processamento de Sinais Assistido por Computador
17.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475177

RESUMO

The electroencephalogram (EEG) has recently emerged as a pivotal tool in brain imaging analysis, playing a crucial role in accurately interpreting brain functions and states. To address the problem that the presence of ocular artifacts in the EEG signals of patients with obstructive sleep apnea syndrome (OSAS) severely affects the accuracy of sleep staging recognition, we propose a method that integrates a support vector machine (SVM) with genetic algorithm (GA)-optimized variational mode decomposition (VMD) and second-order blind identification (SOBI) for the removal of ocular artifacts from single-channel EEG signals. The SVM is utilized to identify artifact-contaminated segments within preprocessed single-channel EEG signals. Subsequently, these signals are decomposed into variational modal components across different frequency bands using the GA-optimized VMD algorithm. These components undergo further decomposition via the SOBI algorithm, followed by the computation of their approximate entropy. An approximate entropy threshold is set to identify and remove components laden with ocular artifacts. Finally, the signal is reconstructed using the inverse SOBI and VMD algorithms. To validate the efficacy of our proposed method, we conducted experiments utilizing both simulated data and real OSAS sleep EEG data. The experimental results demonstrate that our algorithm not only effectively mitigates the presence of ocular artifacts but also minimizes EEG signal distortion, thereby enhancing the precision of sleep staging recognition based on the EEG signals of OSAS patients.


Assuntos
Artefatos , Apneia Obstrutiva do Sono , Humanos , Máquina de Vetores de Suporte , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Algoritmos
18.
Physiol Meas ; 45(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38430565

RESUMO

Objective. Unobtrusive long-term monitoring of cardiac parameters is important in a wide variety of clinical applications, such as the assesment of acute illness severity and unobtrusive sleep monitoring. Here we determined the accuracy and robustness of heartbeat detection by an accelerometer worn on the chest.Approach. We performed overnight recordings in 147 individuals (69 female, 78 male) referred to two sleep centers. Two methods for heartbeat detection in the acceleration signal were compared: one previously described approach, based on local periodicity, and a novel extended method incorporating maximumaposterioriestimation and a Markov decision process to approach an optimal solution.Main results. The maximumaposterioriestimation significantly improved performance, with a mean absolute error for the estimation of inter-beat intervals of only 3.5 ms, and 95% limits of agreement of -1.7 to +1.0 beats per minute for heartrate measurement. Performance held during posture changes and was only weakly affected by the presence of sleep disorders and demographic factors.Significance. The new method may enable the use of a chest-worn accelerometer in a variety of applications such as ambulatory sleep staging and in-patient monitoring.


Assuntos
Sono , Tórax , Humanos , Masculino , Feminino , Frequência Cardíaca , Monitorização Fisiológica , Acelerometria , Processamento de Sinais Assistido por Computador
19.
Sci Rep ; 14(1): 6546, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503856

RESUMO

Pre-processing of the photoplethysmography (PPG) signal plays an important role in the analysis of the pulse wave signal. The task of pre-processing is to remove noise from the PPG signal, as well as to transmit the signal without any distortions for further analysis. The integrity of the pulse waveform is essential since many cardiovascular parameters are calculated from it using morphological analysis. Digital filters with infinite impulse response (IIR) are widely used in the processing of PPG signals. However, such filters tend to change the pulse waveform. The aim of this work is to quantify the PPG signal distortions that occur during IIR filtering in order to select a most suitable filter and its parameters. To do this, we collected raw finger PPG signals from 20 healthy volunteers and processed them by 5 main digital IIR filters (Butterworth, Bessel, Elliptic, Chebyshev type I and type II) with varying parameters. The upper cutoff frequency varied from 2 to 10 Hz and the filter order-from 2nd to 6th. To assess distortions of the pulse waveform, we used the following indices: skewness signal quality index (SSQI), reflection index (RI) and ejection time compensated (ETc). It was found that a decrease in the upper cutoff frequency leads to damping of the dicrotic notch and a phase shift of the pulse wave signal. The minimal distortions of a PPG signal are observed when using Butterworth, Bessel and Elliptic filters of the 2nd order. Therefore, we can recommend these filters for use in applications aimed at morphological analysis of finger PPG waveforms of healthy subjects.


Assuntos
Sistema Cardiovascular , Humanos , Fotopletismografia , Dedos , Frequência Cardíaca , Extremidade Superior , Processamento de Sinais Assistido por Computador
20.
Sci Rep ; 14(1): 5087, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429300

RESUMO

When traditional EEG signals are collected based on the Nyquist theorem, long-time recordings of EEG signals will produce a large amount of data. At the same time, limited bandwidth, end-to-end delay, and memory space will bring great pressure on the effective transmission of data. The birth of compressed sensing alleviates this transmission pressure. However, using an iterative compressed sensing reconstruction algorithm for EEG signal reconstruction faces complex calculation problems and slow data processing speed, limiting the application of compressed sensing in EEG signal rapid monitoring systems. As such, this paper presents a non-iterative and fast algorithm for reconstructing EEG signals using compressed sensing and deep learning techniques. This algorithm uses the improved residual network model, extracts the feature information of the EEG signal by one-dimensional dilated convolution, directly learns the nonlinear mapping relationship between the measured value and the original signal, and can quickly and accurately reconstruct the EEG signal. The method proposed in this paper has been verified by simulation on the open BCI contest dataset. Overall, it is proved that the proposed method has higher reconstruction accuracy and faster reconstruction speed than the traditional CS reconstruction algorithm and the existing deep learning reconstruction algorithm. In addition, it can realize the rapid reconstruction of EEG signals.


Assuntos
Compressão de Dados , Aprendizado Profundo , Processamento de Sinais Assistido por Computador , Compressão de Dados/métodos , Algoritmos , Eletroencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...